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�� Introduction

Recall that for a submanifold M of a Hilbert space V � the end point
map � � ��M� �� V is de�ned by ��v� � x � v for v � ��M�x� where
��M� is the normal bundle of M � M is called proper Fredholm if it has
�nite codimension and the end point map restricted to any �nite normal
disk bundle is a proper Fredholm map� A proper Fredholm submanifold
M is called isoparametric if its normal bundle is globally 	at and the
shape operators along any parallel normal vector �eld are conjugate� We
will always assume that M is complete� An isoparametric submanifold
M of V is called decomposable if there exist two proper closed a
ne
subspaces V�� V� of V and isoparametric submanifolds Mi in Vi for
i � �� � such that V � V� � V� and M � M� �M�� otherwise� M is
called indecomposable� To every isoparametric submanifold� there is a
cannonical way to associate a Coxeter group �cf� 
����� A Coxeter group
is called decomposable if its Coxeter diagram is not connected� The main
purpose of this paper is to prove the following decomposition theorem
which was conjectured in 
���

Theorem A� An isoparametric submanifold is decomposable if its
Coxeter group is decomposable�

It is easy to see that if an isoparametric submanifold M is decom�
posed into the product of two isoparametric submanifolds and each com�
ponent has nontrivial Coxeter group� then the Coxeter group of M is
decomposable� Note that an isoparametric submanifold has trivial Cox�
eter group if and only if it is a closed a
ne subspace of the ambient
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Hilbert space with �nite codimension� The theorem above has been
proved by Terng �cf� 
��� for isoparametric submanifolds of �nite di�
mensional Euclidean spaces�

The above theorem can be applied to study hyperpolar actions on
symmetric spaces� Recall that an isometric action of a compact Lie
groupH on a Riemannian manifoldM is called hyperpolar if there exists
a closed� 	at� connected submanifold � of M that meets all H�orbits
orthogonally� Such a � is called a section� De�ne N��� � fh � H j
h��� � �g and Z��� � fh � H j h�x� � x for all x � �g� Let W ��� �
N����Z���� W ��� is called the generalized Weyl group associated to the
H�action� Two isometric actions of groups Hi on Riemannian manifolds
Mi for i � �� � are said to be ��equivalent if there exists an isometry
f � M� �� M� such that f�H� � x� � H� � f�x� for all x � M�� An
isometric action of H on M is said to be decomposable if there exist
Riemannian Hi�manifoldsMi for i � �� � such that the action ofH onM
is ��equivalent to the product action ofH��H� onM��M�� In this case�
we say that the action onM decomposes as the product of two isometric
actions� Moreover if one of the Hi�actions is transitive� then we say that
this decomposition is trivial� If G is a compact Lie group equipped with
a biinvariant metric and H is a closed subgroup of G � G� then H
has a natural isometric action on G de�ned by �h�� h�� � g � h�gh

��
�

for �h�� h�� � H and g � G� One application of Theorem A is to the
following decomposion theorem of hyperpolar actions which was also
conjectured in 
���

Theorem B� Let G be a compact� simply connected Lie group�
and H a closed subgroup of G � G� Suppose the action of H on G is
hyperpolar� A is a section through e� and W �A� is the generalized Weyl
group associated with the H�action� Then the following statements are
equivalent�

�a� the H�action on G decomposes nontrivially as product of two
isometric actions�

�b� the isometric action of W �A� on A is decomposable�

Let A be a section through e of a hyperpolar action on a compact
Lie group G� and a the Lie algebra of A� Then the Weyl group W �A�
acts on the unit lattice � � exp���e�� a� The corresponding semidirect
product �W � W �A� n � is an a
ne Weyl group� Another application
of Theorem A is the following�

Theorem C� If G is a compact simple Lie group� then the a�ne
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Weyl group associated with any hyperpolar action on G is irreducible�

Note that in this theorem� we do not assume G to be simply con�
nected� Using this theorem� we can improve a result of 
�� �Corol�
lary ����� which states that a group whose action on a compact ir�
reducible symmetric space is hyperpolar is often maximal in terms of
��equivalence� More precisely� we have

Corollary D� Let X � G�K be a compact� connected� irreducible
symmetric space� and H � L � G closed� connected subgroups� If the
H�action on X is hyperpolar� then the L�action on X is either transitive
or ��equivalent to the H�action�

Proof of the corollary� If X is a compact simple Lie group� then
this follows from Theorem C above and Corollary ���� of 
��� If X is
a symmetric space of the �rst type� then G is a simple Lie group� and
the statement follows from the �rst case by considering the H �K and
L�K actions on G�

We would like to make a remark on another conjecture in 
�� which
states that if G is a compact Lie group and the action of H on G is
hyperpolar and indecomposable� then G is simple� This conjecture is not
true in general� A counterexample is the following� Let G� be a compact
simple Lie group� Let G � G� � G� and �G� � f�g� g� j g � G�g the
diagonal subgroup of G� Let H � �G� ��G�� Then the action of H
on G is hyperpolar� since �G��G�� is a compact symmetric pair �cf� 
��
Examples ������ Hermann�s examples�� On one hand� G� � G� is the
only nontrivial way to decompose G as the product of two Riemannian
manifolds� On the other hand� the orbit of the H�action through e is
�G� which does not respect the decomposition of G� Therefore the
H�action on G is indecomposible� However� G is not simple�

This paper is organized as follows� Preliminary knowledge about
isoparametric submanifolds and some of their properties will be given
in Section �� In Section �� we prove Theorem A� while Theorem B and
Theorem C are proved in Section ��

The second author would like to thank the University of Augsburg
for hospitality�

�� Preliminaries

We refer to 
�� and 
�� for the foundations of Riemannian Hilbert
manifolds� In this section we review some basic facts about isopara�
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metric submanifolds in Hilbert space� Suppose M is an isoparametric
submanifold in a Hilbert space V � Since the normal bundle �M is 	at�
the tangent bundle of M splits as TM � �fEi j i � Ig into the direct
sum of the simultaneous eigenspaces Ei of the shape operators� where
I is a countable index set� fEi j i � Ig are called the curvature distri�
butions of M � Let fni j i � Ig be the corresponding curvature normals
of M � i�e�� the globally de�ned parallel normal vector �elds such that
for any parallel normal vector �eld v on M � the restriction of the shape
operator to each Ei is

AvjEi
�� v� ni � Id�

We will always denote the zero curvature normal by n� and the corre�
sponding curvature distribution by E�� We will always assume that M
is full� i�e�� not contained in any proper closed a
ne subspace of V � This
is equivalent to saying that for any point x � M the cuvature normals
fni�x� j i � Ig span the normal space �xM 
��� Proposition ����� It is
known that each curvature distribution is integrable� If ni �� �� the rank
of Ei is �nite and for any x � M � the leaf of Ei passing through x is
a round sphere centered at x� �ni�x��knik

�� with radius ��knik� The
leaves of E� are closed a
ne subspaces of the Hilbert space V �cf� 
�����
The following lemma is useful in proving the integrability of direct sums
of curvature distributions�

Lemma ���� For all i� j� k � I and vector �elds Xi � Ei� Xj � Ej�
Xk � Ek�

� rXi
Xj � Xk � �nj � nk� � � rXj

Xi� Xk � �ni � nk��

Here r is the Levi�Civita connection on M �

Proof� Let � be the second fundamental form of M � and r�

the induced connection on the normal bundle �M � Then the Codazzi
equation is equivalent to

�rXi
���Xj� Xk� � �rXj

���Xi� Xk�
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for all Xi � Ei� Xj � Ej � and Xk � Ek� Now

�rXi
���Xj� Xk� � r�

Xi
���Xj � Xk��

���rXi
Xj � Xk�� ��Xj �rXi

Xk�

� r�

Xi
�� Xj � Xk � nj�� � rXi

Xj � Xk � nk

� � Xj �rXi
Xk � nj

� � rXi
Xj � Xk � nj� � Xj �rXi

Xk � nj

� � rXi
Xj � Xk � nk� � Xj �rXi

Xk � nj

� � rXi
Xj � Xk � �nj � nk��

which implies the lemma�
Although in general� we cannot exchange the order of derivative and

in�nite sum� the following simple fact will be good enough for later
calculations�

Lemma ���� Given a Riemannian Hilbert manifold W � If fXi j
i � Ng is an orthonormal frame for the tangent bundle TW over an
open subset of W � then for all di�erentiable functions fi � C��W �� with
i � N� and vector �elds Y on W �

rY �
X
i

fiXi� �
X
i

rY �fiXi��

Proof� This can be shown by taking inner product with Xj on both
sides of the equation for all j � N�

Now we are able to prove the following integrability theorem�

Proposition ���� Fix an arbitrary point x� � M � For any a�ne
subspace P of the normal space �x�M � let

DP � �fEi j ni�x�� � Pg�

Then DP is a totally geodesic distribution on M � i�e�� rXY � DP

whenever X� Y � DP � In particular� DP is integrable and each leaf of
DP is a totally geodesic submanifold of M �

Proof� Because of Lemma ���� we only need to show that if ni�x���
nj�x�� � P but nk�x�� �� P � then for any vector �elds Xs � Es� where
s � i� j� k� we have

� rXi
Xj � Xk �� ��

Since � Xi� Xk �	 ��

� rXj
Xi� Xk � �ni � nk� � � rXj

Xk� Xi � �nk � ni��
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Applying Lemma ��� to both sides of this equation� we have

� rXi
Xj � Xk � �nj � nk� � � rXk

Xj � Xi � �nj � ni��

Since either nj �nk and nj �ni are linearly independent� or nj �ni � �
but nj � nk �� �� we must have � rXi

Xj � Xk �� �� This proves the
proposition�

Next� we review the de�niton of the Coxeter group associated with
M � For any x� �M � the intersection of the a
ne normal space ��x�� �
x���x�M with the singular point set of the end point map � is the union
of a locally �nite set of a
ne hyperplanes of ��x��� More precisely� it is
equal to


fli�x�� j i � I� i �� �g�

where
li�x�� � fx� � v j v � �x� and � v� ni�x�� �� �g

is the focal a
ne hyperplane associated with the curvature normal ni�
It is obvious that ni is perpendicular to li� The Coxeter group of M is
de�ned to be the discrete group generated by the set of re	ections along
all li�s in ��x�� �cf� 
����� It is easy to see that the following lemma is
true �cf� 
�� Proposition �� p�����

Lemma ���� The Coxeter group of M is decomposible if and only
if there exist two proper linear subspaces P� and P� of �x�M such that
P� � P� and P� 
 P� contains all curvature normals of M at x�� If M
is full� we always have �x�M � P� � P��

�� Proof of Theorem A

We will use the notation of Section �� SupposeM is an isoparametric
submanifold of a Hilbert space V � De�ne

V � � Spanfv�x� j x �M� and v�x� � �xMg�

V � is a closed linear subspace of V � Let V� � �V
����

Lemma ���� If the dimension of V� is larger than 	� then there
exists a submanifold M � � V � such that M � M � � V� and M � is an
isoparametric submanifold of V �� In fact M � �M � V ��

Proof� We �rst show that V� � E��x� for all x �M � Recall that E�

is the curvature distribution of M corresponding to the zero curvature
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normal� For any x � M � since V� � �xM � V� � TxM � We only need
to show that for any Y � Ei�x�� where ni �� �� Y � V�� Consider the
leaf S of Ei through x� Then Y � TxS� It is known that S is a round
sphere centered at c�x� � x � �ni�x��knik

��� By Proposition ���� S is
also totally geodesic in M � Let 	 be a curve in S with 	��� � x and
	���� � Y � Then 	�t� � c�x� � ���t�M � Therefore 	�t� � c�x� � V��
Taking derivative with respect to t� we have 	��t� � V�� In particular�
Y � V�� This shows that V� � E��x��

Let W be the leaf of E� through x� It is known that W is an a
ne
subspace� Therefore� x � V� � W � since V� � E��x�� This implies that
x� V� �M for all x �M � Let M � �M � V �� Then M �M � � V� and
M � is a submanifold of V �� Observe that for any x � M �� the normal
space of M � at x in V � is the same as the normal space of M at x in V �
If v is a parallel normal vector �eld on M � then vjM � is again a parallel
normal vector �eld on M � in V �� So the normal bundle of M � in V � is
globally 	at and the shape operator of M � along vjM � is equal to the
restriction of the shape operator of M along v to TM �� Therefore M �

is isoparametric in V ��
Based on Lemma ���� in the rest of this section� we will assume that

V � Spanfv�x� j x �M� and v�x� � �xMg�

We will also assume M to be full� Therefore at every point x � M �
the curvature normals fni�x� j i � Ig of M at x span the normal space
�xM �

Fix an arbitrary point x� � M � Let � be an open Weyl chamber
in x� � �x�M containing x�� Since the normal bundle of M is 	at�
M �� can be identi�ed with an open subset of the normal bundle of
M in a cannonical way� Therefore the end point map � induces a map
fromM�� to V � Abusing notation� we denote this map also by �� Let
U � ��M���� Then U is a connected open dense subset of V consisting
of non�focal points of M � and � is a di�eomorphism from M �� onto
U �cf� 
��� Theorem ������ Let P be a linear subspace of �x�M � which
is spanned by some curvature normals� For every x � M � let P �x� be
the linear subspace of �xM � which is obtained by parallel translating P
from x� to x in the normal bundle� Let DP be the distribution on M �
which is de�ned as in Proposition ���� Note that DP contains E� since
P is a linear space and we treat n� � � as a curvature normal� Let �DP

be the distribution on U de�ned by

�DP ���x� z�� � P �x�� ��j�x�z��DP �x���
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where x �M and z � ��

Lemma ���� �DP is a totally geodesic distribution on U � and each
leaf of �DP is an open subset of a closed a�ne subspace of V �

Proof� We identify U with M �� via �� If X is a tangent vector
�eld and v is a normal vector �eld on M � we de�ne �X�x� z� � X�x�
and �v�x� z� � v�x� as vector �elds on U � For any z � �� let Mz be the
parallel submanifold of M along z� i�e�� Mz � f��x� z� j x � Mg� It is
known that Mz is also an isoparametric submanifold of V � If Xi � Ei�
then �Xi��� z� � Ez

i where E
z
i is the curvature distribution of Mz with

curvature normal ����� � z� ni�x�� �� � �ni��� z�� If v is a parallel normal
vector �eld on M � then �v��� z� is also a parallel normal vector �eld on
Mz �cf� 
�� p������� Let �Wi� i � �� �� be subdistributions of �DP de�ned
by

�W��x� z� � f �X�x� z� j X�x� � DP �x�g�

and
�W��x� z� � f�v�x� z� j v�x� � P �x�g

for x � M and z � �� Then �DP � �W� � �W�� Now �W� is an integrable
distribution with

fx�v�x� j v is a parallel normal vector �eld on M� and v�x�� � P��g�

where x � M � as leaves� By Proposition ���� �W� is also integrable and
each leaf of �W� is a totally geodesic submanifold ofMz for some z � ��

Let �r be the Levi�Civita connection of the ambient Hilbert space V �
Let rz and �z be the Levi�Civita connection and second fundmental
form ofMz respectively� To prove the lemma� we need to show that for
any vector �elds �X� �Y � �DP � which are de�ned as above� �r �X

�Y � �DP �

This is trivial if �X � �W� since �Y does not depend on z � �� Therefore
we assume that �X � �W�� If �Y � �W�� by Proposition ���� r

z
�X
�Y � �W��

By the de�nition of DP � �z� �X� �Y � � �W�� Therefore

�r �X
�Y � rz

�X
�Y � �z� �X� �Y � � �DP �

If v is a parallel normal vector �eld onM and Xi � Ei with ni�x�� � P �
then

�r �Xi
�v � �Az

�v� �Xi� � Ez
i � �W� � �DP �

where Az is the shape operator of Mz � This proves that �r �X
�Y � �DP

if �Y � �W�� Therefore �DP is totally geodesic� The rest of the lemma
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follows from the fact that any connceted totally geodesic submanifold
of a Hilbert space� whose tangent spaces are closed subspaces of the
Hilbert space� is an open subset of a closed a
ne subspace�

For any point x �M � let LP �x� and �LP �x� be the leaves of DP and
�DP through x respectively� Let WP �x� be the closed a
ne subspace of
V which contains �LP �x� as an open subset� Then for any y � �LP �x��

WP �x� � y � Ty �LP �x� � y � �DP �y��

Lemma ���� LP �x� is a full isoparametric submanifold of WP �x��
Moreover� if P 
P� contains all the curvature normals of M at x�� then
�LP �x� is equal to the set of all non�focal points of LP �x� in WP �x�� and
therefore it is open and dense in WP �x��

Proof� Let v be a parallel normal vector �eld on M such that
v�x�� � P � Then vjLP �x� is a parallel normal vector �eld of LP �x�
in WP �x�� Since the codimension of LP �x� in WP �x� is equal to the
dimension of P � this shows that the normal bundle of LP �x� in WP �x�
is globally 	at� Since the shape operator of LP �x� along vjLP �x� is the
restriction of the shape operator of M along v to the tangent space of
LP �x�� it follows that LP �x� is an isoparametric submanifold of WP �x��
LP �x� is full since its normal space in WP �x� is spanned by curvature
normals of LP �x��

Let R be the set of all non�focal points of LP �x� in WP �x�� If
y � WP �x� is a focal point of LP �x�� then it is also a focal point of
M � Since every point in �LP �x� is a non�focal point of M � we have
�LP �x� � R� On the other hand� if P 
 P� contains all the curvature
normals of M � then for any y � WP �x�� if y is a focal point of M � it
is also a focal point of LP �x�� To see this� take y� � LP �x� such that
y � y� � Ty�LP �x�� Since y � WP �x� � y� � �Ty�LP �x� � P �y���� we
have y�y� � P �y�� � �y�M � If y is a focal point ofM � then there exists
a curvature normal ni of M such that � y � y�� ni�y�� �� �� ni�y��
must lie in P �y�� since otherwise � y � y�� ni�y�� � would be zero by
the assumption� Hence ni�y�� is also a curvature normal of LP �x�� This
shows that y is a focal point of LP �x�� Therefore R � U � It follows that
R � �LP �x�� This �nishes the proof of the lemma�

Lemma ���� Let v be a parallel normal vector �eld on M which
satis�es v�x�� � P � Then �vj�LP �x�

	 constant�

Proof� Since �v does not depend on z � �� it is equivalent to showing
that vjLP �x� 	 constant� To prove this� we need to show that for any
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curve 	 in LP �x�� �v�t� 	 �� where v�t� � v�	�t��� Since v�x�� � P � the
shape operator Av jDP

� �� Therefore� we have �v�t� � �Av�t� �	�t� � ��
since �	�t� � DP �

For every linear subspace P of �x� � we can de�ne a closed linear
subspace� VP � of the ambient Hilbert space V as follows�

VP � Spanfv�x� j x �M� and v�x� � P �x�g�

Lemma ���� If P� and P� are two linear subspaces of �x�M such
that P� � P� and P� 
 P� contains all curvature normals of M at x�
�this implies �x�M � P� � P� since M is full�� then VP� � VP��

Proof� Let v� and v� be two parallel normal vector �elds on M

such that v��x�� � P� and v��x�� � P�� We need to show that for any
two points x�� x� �M � v��x�� � v��x��� In fact� we will prove that for
any two points y�� y� � U � �v��y�� � �v��y��� Note that this is trivial if
y� � y��

Let �L� be the leaf of �DP� through y�� and W� the closed a
ne
subspace which contains �L� as an open subset� By Lemma ���� �v�j�L�

	

constant� For any y � �L�� let �L��y� be the leaf of the distribution �DP�

through y� and �W��y� the closed a
ne subspace which contains �L��y�
as an open subset� By Lemma ���� �v�j�L��y�

	 constant for all y � �L��

Since at the point y � �L�� �L��y�� �v��y� � �v��y�� we have �v��y
�� � �v��y��

for all y� � �L��y�� Let U � � 
�L��y� where y runs through �L�� Then
we have �v��y

�� � �v��y�� for all y
� � U �� By Lemma ���� �L� is dense in

�W� and �L��y� is dense in �W��y� for all y � �L�� Therefore U � is dense
in V � By continuity of �v�� we have �v��y

�� � �v��y�� for all y
� � U � In

particular� �v��y�� � �v��y��� This �nishes the proof of the lemma�
By assumption� V is spanned by the set of all normal vectors of M �

Therefore we have

Corollary ���� Let P� and P� be as in Lemma 
��� Then V �
VP� � VP��

From the proof of Lemma ���� we also have

Corollary ���� Let Pi� i � �� �� be as in Lemma 
��� For any
x �M � let LPi�x� and WPi�x� be de�ned as in Lemma 
�
� Then

VPi � Spanfv�y� j y � LPi�x�� and v�y� � �yLPi�x�g�

where �yLPi�x� is the normal space� at y� of LPi�x� considered as a
submanifold of WPi�x��
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Let Pi� i � �� �� be as in Lemma ���� For any x � M � de�ne
Mi�x� � �x� VPi� �M �

Lemma ���� For i � �� � and x � M � Mi�x� is an isoparametric
submanifold of x�VPi � Let Fi�x� � TxMi�x�� Then Fi de�nes a totally
geodesic distribution on M whose leaf through x is Mi�x�� Moreover
F��x� � F��x� and TxM � F��x�� F��x��

Proof� We use the notation in Lemma ���� Applying Lemma ���
to LPi�x� in WPi�x�� and using Corollary ���� we know that Mi�x� is
an isoparametric submanifold of x � VPi � Mi�x� is totally geodesic in
M since it is totally geodesic in LPi�x� and LPi�x� is totally geodesic
in M � From the de�nition of Fi� we know that the Fi�s are integral
distributions on M with Mi�x�� x �M � as leaves� They are also totally
geodesic since their leaves are totally geodesic� F��x� � F��x� since
VP� � VP� � Since the codimension of Fi�x� in x � VPi is equal to the
dimension of Pi� by Corollary ���� the codimension of F��x�� F��x� in
V is equal to the codimension of M � Therefore TxM � F��x�� F��x��

To prove Theorem A� it remains to show that M �M��x��M��x�
for some x � M � If M is a simply connected� �nite dimensional Rie�
mannian manifold� this follows immediately from the de Rham decom�
position theorem� However� in our case� we do not assume that M is
simply connected� We also do not know whether the de Rham decom�
position theorem is true for in�nite dimensional manifolds� So we give
a complete proof below� We need

Lemma ��	� Let M� be a leaf of F�� Let 	 be an arbitrary curve
in M�� If 
s is a one�parameter family of geodesics in M such that

s��� � 	�s�� �
���� �M�� and r ���s�

�
s���js	� � �� then for every t�

�

�s

s�t�js	� � F��
��t���

Proof� Let J�t� � �
�s

s�t�js	�� Let Ji�t�� i � �� �� be the orthogonal

projection of J�t� to Fi�
��t��� We need to show that J� 	 ��

In fact J��� � �	��� � F��	���� and

J
�

��� � r ����t�
J�t�jt	� � r ���s�

�
s���js	� � ��

Since F� is totally geodesic� we have J���� � J
�

���� � �� Since J is a
Jacobi �eld and F� is totally geodesic� J��t� is a Jacobi �eld as well�
Therefore J� 	 ��



��
 ernst heintze � xiaobo liu

Lemma ���
� Let M��x� and M��x� be the leaves of F� and F�
through x respectively� Then for any y � M��x� and z � M��x�� the
leaves M��y� and M��z� have nonempty intersection�

Proof� We prove this lemma in two steps�
Step �� if x and z can be connected by a geodesic in M��x�� then

M��y� �M��z� �� ��
In fact� let 
� be a geodesic in M��x� such that 
���� � x and


���� � z� Let 	 be an arbitray curve in M��x� such that 	��� � x and
	��� � y� Let X�s� be the parallel translation of �
���� along 	�s�� Since
M��x� is totally geodesic� X�s� � F��	�s�� for all s � 
�� ��� Let 
s be
the geodesic in M with initial velocity X�s�� Since M��	�s�� is totally
geodesic� 
s�t� � M��	�s�� for all t� In particular� 
���� � M��y�� On
the other hand� by Lemma ���� �

�s

s��� � F��
s���� for all s� Therefore

the curve s 
�� 
s��� is contained in M��z�� In particular� 
���� �
M��z�� Hence 
���� �M��y� �M��z� �� ��

Step �� for an arbitrary z �M��x�� there exists a piecewise geodesic

 in M��x� with �nitely many singular points � � t� � t� � � � � �
tn � � such that 
��� � x and 
��� � z� By assumption� y � M��y� �
M��
�t��� �� �� Assume M��y� �M��
�tk�� �� �� Choose yk � M��y� �
M��
�tk��� Applying Step � to xk � 
�tk�� yk � and zk � 
�tk
��� we
have M��yk� �M��zk� �� �� Since M��yk� � M��y�� we have M��y� �
M��
�tk
��� �� �� By induction� the lemma is therefore proved�

Corollary ����� Let M� be a leaf of F�� Then for any x� y � M��
the translation map f�z� � z � y � x of the ambient Hilbert space V
maps M��x� isometrically onto M��y��

Proof� First we prove that if z �M��x�� then

f�z� � z � y � x �M��y��

By Lemma �����M��y��M��z� �� �� It is obvious that

�y � VP�� � �z � VP�� � fz � y � xg�

Since M��y� � y � VP� and M��z� � z � VP� � we must have M��y� �
M��z� � fz � y � xg� In particular� this implies that f�z� � M��y��
Therefore f maps M��x� into M��y�� Similarly� we can show that f

��

maps M��y� into M��x�� Since f is an isometry of the ambient Hilbert
space� it follows that f maps M��x� isometrically onto M��y��

Corollary ����� For any x �M � M �M��x��M��x��
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Proof� De�ne

�f � �x� VP��� �x� VP�� �� V�

�y� z� 
�� y � z � x�

It is clear that �f is an isometry� From Corollary ����� we know �f maps
M��x��M��x� into M � Since F� � F� � TM � �f�M��x��M��x�� is an
open and closed submanifold of M � and is therefore equal to M since
M is connected�

Proof of Theorem A� This theorem follows from Lemma ��� and
Corollary �����

�� Proofs of Theorem B and Theorem C

First we review the relationship between hyperpolar actions on com�
pact Lie groups and isoparametric submanifolds in Hilbert spaces� which
was discovered by Terng �cf� 
����� Let G be a compact� connected�
semisimple Lie group� equipped with a bi�invariant metric� and g its Lie
algebra� Let V � H��
�� ��� g� be the Hilbert space of H��maps from

�� �� to g� One can think of V as the space of connections of the trivial
principal G�bundle over 
�� ��� For every u � V � let Eu�t� be the par�
allel translation corresponding to the connection de�ned by u� More
precisely� Eu � 
�� �� �� G is the unique solution to the initial value
problem �

E��E� � u�

E��� � e�

Let  �u� � Eu��� be the holonomy of the connection u�  de�nes a
�bration of V over G� For any x � g� let �x denote the constant path in g

with value x� The map x 
�� �x de�nes an embedding of the Lie algebra
g into V � The restriction of  to the image of g is just the exponential
map on G�

Let �G � H��
�� ��� G� be the Hilbert Lie group of H��paths from

�� �� to G� �G acts on V isometrically via gauge transformations�

g � u � gug�� � g�g���

where g � �G and u � V � It is easy to see that this action is transitive�
Let H be a closed� connected subgroup of G�G� De�ne

P �G�H� � fg � �G j �g���� g����� Hg�
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The action of P �G�H� on V via gauge transformation is proper and
Fredholm� The holonomy map  maps the orbit of the P �G�H��action
on V onto the orbit of the H�action on G� Suppose that the H�action on
G is hyperpolar� and A is a section of the H�action through e with Lie
algebra a� Then the P �G�H��action on V is also hyperpolar with section
�a � f�a j a � ag� Moreover u � V is a singular point of the P �G�H��
action if and only if  �u� is a singular point of the H�action �cf� 
���
Theorem ������ Without loss of generality� we will always assume e to
be a regular point of the H�action on G� Then ��� which is the origin of
V � is a regular point of the P �G�H��action� LetM � P �G�H� ���� Then
M is an isoparametric submanifold of V with normal space ���M � �a�
The Coxeter group ofM as an isoparametric submanifold is isomorphic
to the a
ne Weyl group �W of the H�action on G which was de�ned in
the introduction �cf� 
��� Theorem ����� and 
��� Theorem ������

Lemma ���� Assume that the H�action on G is hyperpolar� and e
is a regular point� Let a � g be the Lie algebra of the section of the
H�action through e� If there exist two proper linear subspaces a� and a�

of a� such that a� � a� and �a� 
 �a� contains all curvature normals of
M � P �G�H� � �� at ��� then the ideals of g generated by a� and a� are
perpendicular to each other�

Proof� For any b � a� we de�ne a normal vector �eld �b on M

by �b�g � ��� � g�bg��� where g � P �G�H�� Since the P �G�H��action is
hyperpolar� �b is a parallel normal vector �eld on M � Let bi � ai for i �
�� �� By Lemma ���� for any gi � P �G�H�� i � �� �� �b��g� ���� � �b��g� �����
Therefore g��b�g

��
� � g��b�g

��
� � In particular� we have g�b�g�� � �b� for all

g � P �G�H�� So we have

� �� g�b�g
����b� ��

Z �

�
� g�t�b�g�t�

��� b� � dt

for all g � P �G�H�� Since any path in G which is obtained by a
reparametrization of g � P �G�H� is also in P �G�H�� the above equa�
tion holds for all parametrizations of g� In case g is a continuous path�
this implies that � g�t�b�g�t���� b� �� � for all t� Since for any point
in G� we can choose a smooth curve g � P �G�H� which passes through
this point� we conclude that b� is perpendicular to the adjoint orbit of
b� for any bi � ai� i � �� �� Therefore a� is perpendicular to the ideal
generated by a�� Since the orthogonal complement of an ideal is an ideal
as well� the lemma follows�

Proof of Theorem C� Without loss of generality� we may assume
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e is a regular point of the H�action on G� Let M � P �G�H� � ��� By
Lemma ���� if �W is decomposable� then there exists two proper linear
subspaces �a� and �a� of �a � ���M such that �a� � �a� and �a� 
 �a� contains
all curvature normals ofM at ��� By Lemma ���� the ideals generated by
ai� i � �� �� are proper ideals of the Lie algebra of G� This contradicts
to the assumption that G is simple�

Before proving Theorem B� we �rst prove the following general fact�

Lemma ���� Assume that M is a compact Riemannian H�manifold
and the H�action on M is hyperpolar with �at tori as sections� If the
H�action is decomposed into the product of two isometric actions� then
each component is hyperpolar�

Proof� Suppose that Mi is an Hi�manifold for i � �� � such that
the H�action on M is ��equivalent to the product action of H� � H�

on M� �M�� Then the �H� � H���action is hyperpolar with 	at tori
as sections� Let x � �x�� x��� where xi � Mi� be a regular point of
the �H� � H���action� We identify M� with M� � fx�g and M� with
fx�g �M�� Let � be the section of the �H� � H���action through x�
Then Tx� � �� � �� for some subspaces �i� i � �� �� of TxMi� Let �i�
i � �� �� be the closure of the set expx �i� Since both � and Mi are
totally geodesic in M� �M�� �i � Mi � � for i � �� �� Moreover� since
� is a 	at torus� �i� i � �� �� is a 	at� totally geodesic submanifold of
Mi� Since �� ��� �M� �M� � fxg� comparing the dimensions of �i�s
with that of �� we know that �i � expx �i for i � �� � and � � ������
It then follows that �i is the section of the Hi�action on Mi� Therefore
the Hi�action� i � �� �� is hyperpolar�

Proof of Theorem B� �a� b�� We �rst notice that if G is a product
of two Riemannian manifolds� then each component is a compact Lie
group due to the fact that the holonomy representation of G is just
the adjoint representation� The statement then follows trivially from
Lemma ����

�b � a�� Without loss of generality� we assume that e is a regular
point of the H�action on G� Suppose that the action of the generalized
Weyl groupW �A� on A is ��equivalent to the product action ofW��W�

on A� � A�� where W� and W� are two �nite groups and A� � A� is
isometric to A� We may identify A� � A� with A� By the de�nition
of ��equivalence� the W �A��action and the �W� �W���action have the
same singular point sets� Let S be the set of all singular points of the
W �A��action on A� and Si� i � �� �� the set of all singular points of the
Wi�action on Ai� Then S � �S� � A�� 
 �A� � S��� It is known that S
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is a union of �nitely many totally geodesic hypersurfaces of A �cf� 
����
Now consider the P �G�H��action on V � H��
�� ��� g�� It is known

that the holonomy map  maps singular points of the P �G�H��action on
V to singular points of the H�action on G �cf� 
��� Theorem ������ Let
M � P �G�H� ���� The set of all singular points of the P �G�H��action is
also the set of all focal points ofM � Let a� a�� and a� be the Lie algebras
of A� A�� and A� respectively� The restriction of the holonomy map to
�a � ���M � i�e��  j�a � �a �� A� is locally isometric� It maps the union
of focal hyperplanes in �a locally isometrically to S �cf� 
��� Theorem
������� Consequently� the normal vector of each focal hyperplane in �a
is contained either in �a� or �a�� Let g� be the ideal �of g� generated by
a�� and g� the orthogonal complement of g� in g� By Lemma ���� g� is
a proper ideal of g which contains a�� Let Gi� i � �� �� be the closed
connected Lie subgroup of G whose Lie algebra is gi� Since G is simply
connected� G � G� � G�� Therefore G � G also splits as a product of
G��G� and G��G�� Let Hi� i � �� �� be the projection ofH to Gi�Gi�
It is easy to see that ai� i � �� �� is perpendicular to the orbit of the
Hi�action on Gi at the unit element� Since H � H� � H�� this shows
that the orbits through e of the H�action and the �H� �H���action on
G � G��G� have the same normal space at e� Consequently� these two
orbits coincide with each other� By a well known lemma of Hermann

��� all orbits of the �H� � H���action are perpendicular to A� Hence
the �H� � H���action is hyperpolar with the same principal orbits as
those of the H�action� Since the principal orbits of a hyperpolar action
determine the other orbits� the H�action is ��equivalent to the product
action of H� �H��
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